Publications

Non-adiabatic Quantum Wavepacket Dynamics Simulation Based on Electronic Structure Calculations using the Variational Quantum Eigensolver

A non-adiabatic nuclear wavepacket dynamics simulation of the H2O+ de-excitation process is performed based on electronic structure calculations using the variational quantum eigensolver. The adiabatic potential energy surfaces and non-adiabatic coupling vectors are computed with algorithms for noisy intermediate-scale quantum devices, and time propagation is simulated with conventional methods for classical computers. The results of non-adiabatic transition dynamics from the B~ state to A~ state reproduce the trend reported in previous studies, which suggests that this quantum-classical hybrid scheme may be a useful application for noisy intermediate-scale quantum devices.

2021/11/08

Quantum chemistryNISQ deviceJoint research
by Hirotoshi Hirai, Sho Koh

Analytic energy gradient for state-averaged orbital-optimized variational quantum eigensolvers and its application to a photochemical reaction

Elucidating photochemical reactions is vital to understand various biochemical phenomena and develop functional materials such as artificial photosynthesis and organic solar cells, albeit its notorious difficulty by both experiments and theories. The best theoretical way so far to analyze photochemical reactions at the level of ab initio electronic structure is the state-averaged multi-configurational self-consistent field (SA-MCSCF) method. However, the exponential computational cost of classical computers with the increasing number of molecular orbitals hinders applications of SA-MCSCF for large systems we are interested in. Utilizing quantum computers was recently proposed as a promising approach to overcome such computational cost, dubbed as SA orbital-optimized variational quantum eigensolver (SA-OO-VQE). Here we extend a theory of SA-OO-VQE so that analytical gradients of energy can be evaluated by standard techniques that are feasible with near-term quantum computers. The analytical gradients, known only for the state-specific OO-VQE in previous studies, allow us to determine various characteristics of photochemical reactions such as the minimal energy (ME) points and the conical intersection (CI) points. We perform a proof-of-principle calculation of our methods by applying it to the photochemical cis-trans isomerization of 1,3,3,3-tetrafluoropropene. Numerical simulations of quantum circuits and measurements can correctly capture the photochemical reaction pathway of this model system, including the ME and CI points. Our results illustrate the possibility of leveraging quantum computers for studying photochemical reactions.

2021/07/27

Quantum chemistryNISQ deviceJoint research
by Keita Arimitsu, Yuya O. Nakagawa, Sho Koh, Wataru Mizukami, Qi Gao, Takao Kobayashi

Molecular Structure Optimization based on Electrons-Nuclei Quantum Dynamics Computation

A new concept of the molecular structure optimization method based on quantum dynamics computations is presented. Nuclei are treated as quantum mechanical particles, as are electrons, and the many-body wave function of the system is optimized by the imaginary time evolution method. A demonstration with a 2-dimensional H2+ molecule shows that the optimized nuclear positions can be specified with a small number of observations. This method is considered to be suitable for quantum computers, the development of which will realize its application as a powerful method.

2021/07/14

Quantum chemistryNISQ deviceJoint research
by Hirotoshi Hirai, Takahiro Horiba, Soichi Shirai, Keita Kanno, Keita Arimitsu, Yuya O. Nakagawa, Sho Koh

Deep variational quantum eigensolver for excited states and its application to quantum chemistry calculation of periodic materials

A programmable quantum device that has a large number of qubits without fault-tolerance has emerged recently. Variational Quantum Eigensolver (VQE) is one of the most promising ways to utilize the computational power of such devices to solve problems in condensed matter physics and quantum chemistry. As the size of the current quantum devices is still not large for rivaling classical computers at solving practical problems, Fujii et al. proposed a method called "Deep VQE" which can provide the ground state of a given quantum system with the smaller number of qubits by combining the VQE and the technique of coarse-graining [K. Fujii, et al, arXiv:2007.10917]. In this paper, we extend the original proposal of Deep VQE to obtain the excited states and apply it to quantum chemistry calculation of a periodic material, which is one of the most impactful applications of the VQE. We first propose a modified scheme to construct quantum states for coarse-graining in Deep VQE to obtain the excited states. We also present a method to avoid a problem of meaningless eigenvalues in the original Deep VQE without restricting variational quantum states. Finally, we classically simulate our modified Deep VQE for quantum chemistry calculation of a periodic hydrogen chain as a typical periodic material. Our method reproduces the ground-state energy and the first-excited-state energy with the errors up to O(1)% despite the decrease in the number of qubits required for the calculation by two or four compared with the naive VQE. Our result will serve as a beacon for tackling quantum chemistry problems with classically-intractable sizes by smaller quantum devices in the near future.

2021/04/02

Quantum chemistryCondensed matter physicsNISQ deviceJoint research
by Kaoru Mizuta, Mikiya Fujii, Shigeki Fujii, Kazuhide Ichikawa, Yutaka Imamura, Yukihiro Okuno, Yuya O. Nakagawa

Variational quantum simulations of stochastic differential equations

Stochastic differential equations (SDE), which models uncertain phenomena as the time evolution of random variables, are exploited in various fields of natural and social sciences such as finance. Since SDEs rarely admit analytical solutions and must usually be solved numerically with huge classical-computational resources in practical applications, there is strong motivation to use quantum computation to accelerate the calculation. Here, we propose a quantum-classical hybrid algorithm that solves SDEs based on variational quantum simulation (VQS). We first approximate the target SDE by a trinomial tree structure with discretization and then formulate it as the time-evolution of a quantum state embedding the probability distributions of the SDE variables. We embed the probability distribution directly in the amplitudes of the quantum state while the previous studies did the square-root of the probability distribution in the amplitudes. Our embedding enables us to construct simple quantum circuits that simulate the time-evolution of the state for general SDEs. We also develop a scheme to compute the expectation values of the SDE variables and discuss whether our scheme can achieve quantum speed-up for the expectation-value evaluations of the SDE variables. Finally, we numerically validate our algorithm by simulating several types of stochastic processes. Our proposal provides a new direction for simulating SDEs on quantum computers.

2020/12/08

Joint research
by Kenji Kubo, Yuya O Nakagawa, Suguru Endo, Shota Nagayama

Variational Quantum Simulation for Periodic Materials

We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such as ground states and quasiparticle band structures. By extending the unitary coupled cluster (UCC) theory to describe crystals in arbitrary dimensions, we numerically demonstrate in hydrogen chain that the UCC ansatz implemented on a quantum circuit can be successfully optimized with a small deviation from the exact diagonalization over the entire range of the potential energy curves. Furthermore, with the aid of the quantum subspace expansion method, in which we truncate the Hilbert space within the linear response regime from the ground state, the quasiparticle band structure is computed as charged excited states. Our work establishes a powerful interface between the rapidly developing quantum technology and modern material science.

2020/08/21

Quantum chemistryCondensed matter physicsMaterial scienceNISQ deviceJoint research
by Nobuyuki Yoshioka, Yuya O. Nakagawa, Yu-ya Ohnishi, Wataru Mizukami

Calculating transition amplitudes by variational quantum deflation

Variational quantum eigensolver (VQE) is an appealing candidate for the application of near-term quantum computers. A technique introduced in [Higgot et al., Quantum 3, 156 (2019)], which is named variational quantum deflation (VQD), has extended the ability of the VQE framework for finding excited states of a Hamiltonian. However, no method to evaluate transition amplitudes between the eigenstates found by the VQD without using any costly Hadamard-test-like circuit has been proposed despite its importance for computing properties of the system such as oscillator strengths of molecules. Here we propose a method to evaluate transition amplitudes between the eigenstates obtained by the VQD avoiding any Hadamard-test-like circuit. Our method relies only on the ability to estimate overlap between two states, so it does not restrict to the VQD eigenstates and applies for general situations. To support the significance of our method, we provide a comprehensive comparison of three previously proposed methods to find excited states with numerical simulation of three molecules (lithium hydride, diazene, and azobenzene) in a noiseless situation and find that the VQD method exhibits the best performance among the three methods. Finally, we demonstrate the validity of our method by calculating the oscillator strength of lithium hydride in numerical simulations with shot noise. Our results illustrate the superiority of the VQD to find excited states and widen its applicability to various quantum systems.

2020/02/26

Quantum chemistryNISQ deviceJoint research
by Yohei Ibe, Yuya O. Nakagawa, Nathan Earnest, Takahiro Yamamoto, Kosuke Mitarai, Qi Gao, Takao Kobayashi

Orbital optimized unitary coupled cluster theory for quantum computer

We propose an orbital optimized method for unitary coupled cluster theory (OO-UCC) within the variational quantum eigensolver (VQE) framework for quantum computers. OO-UCC variationally determines the coupled cluster amplitudes and also molecular orbital coefficients. Owing to its fully variational nature, first-order properties are readily available. This feature allows the optimization of molecular structures in VQE without solving any additional equations. Furthermore, the method requires smaller active space and shallower quantum circuit than UCC to achieve the same accuracy. We present numerical examples of OO-UCC using quantum simulators, which include the geometry optimization of the water molecule.

2019/10/25

Quantum chemistryNISQ deviceJoint research
by Wataru Mizukami, Kosuke Mitarai, Yuya O. Nakagawa, Takahiro Yamamoto, Tennin Yan, Yu-ya Ohnishi