# Publications

## Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation

Simulation of quantum many-body systems is a promising application of quantum computers. However, implementing the time-evolution operator as a quantum circuit efficiently on near-term devices with limited resources is challenging. Standard approaches like Trotterization often require deep circuits, making them impractical. This paper proposes a hybrid quantum-classical algorithm called Local Subspace Variational Quantum Compilation (LSVQC) for compiling the time-evolution operator. The LSVQC uses variational optimization to reproduce the action of the target time-evolution operator within a physically reasonable subspace. Optimization is performed on small local subsystems based on the Lieb-Robinson bound, allowing for cost function evaluation using small-scale quantum devices or classical computers. Numerical simulations on a spin-lattice model and an ab initio effective model of strongly correlated material Sr2CuO3 demonstrate the algorithm's effectiveness. It is shown that the LSVQC achieves a 95% reduction in circuit depth compared to Trotterization while maintaining accuracy. The subspace restriction also reduces resource requirements and improves accuracy. Furthermore, we estimate the gate count needed to execute the quantum simulations using the LSVQC on near-term quantum computing architectures in the noisy intermediate-scale or early fault-tolerant quantum computing era. Our estimation suggests that the acceptable physical gate error rate for the LSVQC can be significantly larger than for Trotterization.

## Qubit frugal entanglement determination with the deep multi-scale entanglement renormalization ansatz

We study the deep multi-scale entanglement renormalization ansatz (DMERA) on quantum hardware and the causal cone of a subset of the qubits which make up the ansatz. This causal cone spans O(M+logN) physical qubits on a quantum device, where M and N are the subset size and the total number qubits in the ansatz respectively. This allows for the determination of the von Neumann entanglement entropy of the N qubit wave-function using O(M+logN) qubits by diagonalization of the reduced density matrix (RDM). We show this by randomly initializing a 16-qubit DMERA and diagonalizing the resulting RDM of the M-qubit subsystem using density matrix simulation. As an example of practical interest, we also encode the variational ground state of the quantum critical long-range transverse field Ising model (LRTIM) on 8 spins using DMERA. We perform density matrix simulation with and without noise to obtain entanglement entropies in separate experiments using only 4 qubits. Finally we repeat the experiment on the IBM Kyoto backend reproducing simulation results.

## Orbital-rotated Fermi-Hubbard model as a benchmarking problem for quantum chemistry with the exact solution

Evaluating the relative performance of different quantum algorithms for quantum computers is of great significance in the research of quantum algorithms. In this study, we consider the problem of quantum chemistry, which is considered one of the important applications of quantum algorithms. While evaluating these algorithms in systems with a large number of qubits is essential to see the scalability of the algorithms, the solvable models usually used for such evaluations typically have a small number of terms compared to the molecular Hamiltonians used in quantum chemistry. The large number of terms in molecular Hamiltonians is a major bottleneck when applying quantum algorithms to quantum chemistry. Various methods are being considered to address this problem, highlighting its importance in developing quantum algorithms for quantum chemistry. Based on these points, a solvable model with a number of terms comparable to the molecular Hamiltonian is essential to evaluate the performance of such algorithms. In this paper, we propose a set of exactly solvable Hamiltonians that has a comparable order of terms with molecular Hamiltonians by applying a spin-involving orbital rotation to the one-dimensional Fermi-Hubbard Hamiltonian. We verify its similarity to the molecular Hamiltonian from some prospectives and investigate whether the difficulty of calculating the ground-state energy changes before and after orbital rotation by applying the density matrix renormalization group up to 24 sites corresponding to 48 qubits. This proposal would enable proper evaluation of the performance of quantum algorithms for quantum chemistry, serving as a guiding framework for algorithm development.

## ADAPT-QSCI: Adaptive Construction of Input State for Quantum-Selected Configuration Interaction

We present a quantum-classical hybrid algorithm for calculating the ground state and its energy of the quantum many-body Hamiltonian by proposing an adaptive construction of a quantum state for the quantum-selected configuration interaction (QSCI) method. QSCI allows us to select important electronic configurations in the system to perform CI calculation (subspace diagonalization of the Hamiltonian) by sampling measurement for a proper input quantum state on a quantum computer, but how we prepare a desirable input state has remained a challenge. We propose an adaptive construction of the input state for QSCI in which we run QSCI repeatedly to grow the input state iteratively. We numerically illustrate that our method, dubbed ADAPT-QSCI, can yield accurate ground-state energies for small molecules, including a noisy situation for eight qubits where error rates of two-qubit gates and the measurement are both as large as 1%. ADAPT-QSCI serves as a promising method to take advantage of current noisy quantum devices and pushes forward its application to quantum chemistry.

## Bias-preserving computation with the bit-flip code

We explore the feasibility of fault-tolerant quantum computation using the bit-flip repetition code in a biased noise channel where only the bit-flip error can occur. While several logic gates can potentially produce phase-flip errors even in such a channel, we propose bias-preserving implementation of S, H, CZ, and Rz gates. We demonstrate that our scheme improves the computational precision in several tasks such as the time evolution of quantum systems and variational quantum eigensolver.

## Classical variational optimization of PREPARE circuit for quantum phase estimation of quantum chemistry Hamiltonians

We propose a method for constructing PREPARE circuits for quantum phase estimation of a molecular Hamiltonian in quantum chemistry by using variational optimization of quantum circuits solely on classical computers. The PREPARE circuit generates a quantum state which encodes the coefficients of the terms in the Hamiltonian as probability amplitudes and plays a crucial role in the state-of-the-art efficient implementations of quantum phase estimation. We employ the automatic quantum circuit encoding algorithm [Shirakawa et al., arXiv:2112.14524] to construct PREPARE circuits, which requires classical simulations of quantum circuits of O(logN) qubits with N being the number of qubits of the Hamiltonian. The generated PREPARE circuits do not need any ancillary qubit. We demonstrate our method by investigating the number of T-gates of the obtained PREPARE circuits for quantum chemistry Hamiltonians of various molecules, which shows a constant-factor reduction compared to previous approaches that do not use ancillary qubits. Since the number of available logical qubits and T gates will be limited at the early stage of the fault-tolerant quantum computing, the proposed method is particularly of use for performing the quantum phase estimation with such limited capability.

## Variational quantum algorithm for ergotropy estimation in quantum many-body batteries

Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of quantum technologies. In this work we simulate the charging process and work extraction of many-body quantum batteries on noisy-intermediate scale quantum (NISQ) devices, and devise the Variational Quantum Ergotropy (VQErgo) algorithm which finds the optimal unitary operation that maximises work extraction from the battery. We test VQErgo by calculating the ergotropy of a quantum battery undergoing transverse field Ising dynamics. We investigate the battery for different system sizes and charging times and analyze the minimum required circuit depth of the variational optimization using both ideal and noisy simulators. Finally, we optimize part of the VQErgo algorithm and calculate the ergotropy on one of IBM's quantum devices.

## Demonstrating Quantum Computation for Quasiparticle Band Structures

Understanding and predicting the properties of solid-state materials from first-principles has been a great challenge for decades. Owing to the recent advances in quantum technologies, quantum computations offer a promising way to achieve this goal. Here, we demonstrate the first-principles calculation of a quasiparticle band structure on actual quantum computers. This is achieved by hybrid quantum-classical algorithms in conjunction with qubit-reduction and error-mitigation techniques. Our demonstration will pave the way to practical applications of quantum computers.

## Modal analysis on quantum computers via qubitization

Natural frequencies and normal modes are basic properties of a structure which play important roles in analyses of its vibrational characteristics. As their computation reduces to solving eigenvalue problems, it is a natural arena for application of quantum phase estimation algorithms, in particular for large systems. In this note, we take up some simple examples of (classical) coupled oscillators and show how the algorithm works by using qubitization methods based on a sparse structure of the matrix. We explicitly construct block-encoding oracles along the way, propose a way to prepare initial states, and briefly touch on a more generic oracle construction for systems with repetitive structure. As a demonstration, we also give rough estimates of the necessary number of physical qubits and actual runtime it takes when carried out on a fault-tolerant quantum computer.

## Accelerated variational quantum eigensolver with joint Bell measurement

The variational quantum eigensolver (VQE) stands as a prominent quantum-classical hybrid algorithm for near-term quantum computers to obtain the ground states of molecular Hamiltonians in quantum chemistry. However, due to the non-commutativity of the Pauli operators in the Hamiltonian, the number of measurements required on quantum computers increases significantly as the system size grows, which may hinder practical applications of VQE. In this work, we present a protocol termed joint Bell measurement VQE (JBM-VQE) to reduce the number of measurements and speed up the VQE algorithm. Our method employs joint Bell measurements, enabling the simultaneous measurement of the absolute values of all expectation values of Pauli operators present in the Hamiltonian. In the course of the optimization, JBM-VQE estimates the absolute values of the expectation values of the Pauli operators for each iteration by the joint Bell measurement, while the signs of them are measured less frequently by the conventional method to measure the expectation values. Our approach is based on the empirical observation that the signs do not often change during optimization. We illustrate the speed-up of JBM-VQE compared to conventional VQE by numerical simulations for finding the ground states of molecular Hamiltonians of small molecules, and the speed-up of JBM-VQE at the early stage of the optimization becomes increasingly pronounced in larger systems. Our approach based on the joint Bell measurement is not limited to VQE and can be utilized in various quantum algorithms whose cost functions are expectation values of many Pauli operators.