Publications
Quantum expectation value estimation by doubling the number of qubits
Expectation value estimation is ubiquitous in quantum algorithms. The expectation value of a Hamiltonian, which is essential in various practical applications, is often estimated by measuring a large number of Pauli strings on quantum computers and performing classical post-processing. In the case of n-qubit molecular Hamiltonians in quantum chemistry calculations, it is necessary to evaluate O(n4) Pauli strings, requiring a large number of measurements for accurate estimation. To reduce the measurement cost, we assess an existing idea that uses two copies of an n-qubit quantum state of interest and coherently measures them in the Bell basis, which enables the simultaneous estimation of the absolute values of expectation values of all the n-qubit Pauli strings. We numerically investigate the efficiency of energy estimation for molecular Hamiltonians of up to 12 qubits. The results show that, when the target precision is no smaller than tens of milli-Hartree, this method requires fewer measurements than conventional sampling methods. This suggests that the method may be useful for many applications that rely on expectation value estimation of Hamiltonians and other observables as well when moderate precision is sufficient.
Quantum-selected configuration interaction with time-evolved state
Quantum-selected configuration interaction (QSCI) utilizes an input quantum state on a quantum device to select important bases (electron configurations in quantum chemistry) which define a subspace where we diagonalize a target Hamiltonian, i.e., perform selected configuration interaction, on classical computers. Previous proposals for preparing a good input state, which is crucial for the quality of QSCI, based on optimization of quantum circuits may suffer from optimization difficulty and require many runs of the quantum device. Here we propose using a time-evolved state by the target Hamiltonian (for some initial state) as an input of QSCI. Our proposal is based on the intuition that the time evolution by the Hamiltonian creates electron excitations of various orders when applied to the initial state. We numerically investigate the accuracy of the energy obtained by the proposed method for quantum chemistry Hamiltonians describing electronic states of small molecules. Numerical results reveal that our method can yield sufficiently accurate ground-state energies for the investigated molecules. Our proposal provides a systematic and optimization-free method to prepare the input state of QSCI and could contribute to practical applications of quantum computers to quantum chemistry calculations.
Contrasting Statistical Phase Estimation with the Variational Quantum Eigensolver in the era of Early Fault Tolerant Quantum Computation
In this review, we give an overview of the proposed applications in the early-FTQC (EFTQC) era. Starting from the error correction architecture for EFTQC device, we first review the recently developed space-time efficient analogue rotation (STAR) architecture, which is a partially fault-tolerant error correction architecture. Then, we review the requirements of an EFTQC algorithm. In particular, the class of ground state energy estimation (GSEE) algorithm known as the statistical phase estimation algorithm (SPE) is studied. We especially cast our attention on two SPE-type algorithms, the step-function filter-based variant by Lin and Tong (LT22) and Gaussian Filter. Based on the latter, we introduce the Gaussian Fitting algorithm, which uses an alternative post-processing procedure compared to the previous study. Finally, we systematically simulate the aforementioned algorithms and Variational Quantum Eigensolver (VQE) using the 1-uCJ ansatz with different shot counts. Most importantly, we perform noisy simulations based on the STAR architecture. We find that for estimating the ground state energy of the 4-qubit H2 Hamiltonian in the STO-3G basis, SPE becomes more advantageous over VQE when the physical error rate is sufficiently low.
Orbital-rotated Fermi-Hubbard model as a benchmarking problem for quantum chemistry with the exact solution
Evaluating the relative performance of different quantum algorithms for quantum computers is of great significance in the research of quantum algorithms. In this study, we consider the problem of quantum chemistry, which is considered one of the important applications of quantum algorithms. While evaluating these algorithms in systems with a large number of qubits is essential to see the scalability of the algorithms, the solvable models usually used for such evaluations typically have a small number of terms compared to the molecular Hamiltonians used in quantum chemistry. The large number of terms in molecular Hamiltonians is a major bottleneck when applying quantum algorithms to quantum chemistry. Various methods are being considered to address this problem, highlighting its importance in developing quantum algorithms for quantum chemistry. Based on these points, a solvable model with a number of terms comparable to the molecular Hamiltonian is essential to evaluate the performance of such algorithms. In this paper, we propose a set of exactly solvable Hamiltonians that has a comparable order of terms with molecular Hamiltonians by applying a spin-involving orbital rotation to the one-dimensional Fermi-Hubbard Hamiltonian. We verify its similarity to the molecular Hamiltonian from some prospectives and investigate whether the difficulty of calculating the ground-state energy changes before and after orbital rotation by applying the density matrix renormalization group up to 24 sites corresponding to 48 qubits. This proposal would enable proper evaluation of the performance of quantum algorithms for quantum chemistry, serving as a guiding framework for algorithm development.
ADAPT-QSCI: Adaptive Construction of Input State for Quantum-Selected Configuration Interaction
We present a quantum-classical hybrid algorithm for calculating the ground state and its energy of the quantum many-body Hamiltonian by proposing an adaptive construction of a quantum state for the quantum-selected configuration interaction (QSCI) method. QSCI allows us to select important electronic configurations in the system to perform CI calculation (subspace diagonalization of the Hamiltonian) by sampling measurement for a proper input quantum state on a quantum computer, but how we prepare a desirable input state has remained a challenge. We propose an adaptive construction of the input state for QSCI in which we run QSCI repeatedly to grow the input state iteratively. We numerically illustrate that our method, dubbed ADAPT-QSCI, can yield accurate ground-state energies for small molecules, including a noisy situation for eight qubits where error rates of two-qubit gates and the measurement are both as large as 1%. ADAPT-QSCI serves as a promising method to take advantage of current noisy quantum devices and pushes forward its application to quantum chemistry.
Bias-preserving computation with the bit-flip code
We explore the feasibility of fault-tolerant quantum computation using the bit-flip repetition code in a biased noise channel where only the bit-flip error can occur. While several logic gates can potentially produce phase-flip errors even in such a channel, we propose bias-preserving implementation of S, H, CZ, and Rz gates. We demonstrate that our scheme improves the computational precision in several tasks such as the time evolution of quantum systems and variational quantum eigensolver.
Classical variational optimization of PREPARE circuit for quantum phase estimation of quantum chemistry Hamiltonians
We propose a method for constructing PREPARE circuits for quantum phase estimation of a molecular Hamiltonian in quantum chemistry by using variational optimization of quantum circuits solely on classical computers. The PREPARE circuit generates a quantum state which encodes the coefficients of the terms in the Hamiltonian as probability amplitudes and plays a crucial role in the state-of-the-art efficient implementations of quantum phase estimation. We employ the automatic quantum circuit encoding algorithm [Shirakawa et al., arXiv:2112.14524] to construct PREPARE circuits, which requires classical simulations of quantum circuits of O(logN) qubits with N being the number of qubits of the Hamiltonian. The generated PREPARE circuits do not need any ancillary qubit. We demonstrate our method by investigating the number of T-gates of the obtained PREPARE circuits for quantum chemistry Hamiltonians of various molecules, which shows a constant-factor reduction compared to previous approaches that do not use ancillary qubits. Since the number of available logical qubits and T gates will be limited at the early stage of the fault-tolerant quantum computing, the proposed method is particularly of use for performing the quantum phase estimation with such limited capability.
Accelerated variational quantum eigensolver with joint Bell measurement
The variational quantum eigensolver (VQE) stands as a prominent quantum-classical hybrid algorithm for near-term quantum computers to obtain the ground states of molecular Hamiltonians in quantum chemistry. However, due to the non-commutativity of the Pauli operators in the Hamiltonian, the number of measurements required on quantum computers increases significantly as the system size grows, which may hinder practical applications of VQE. In this work, we present a protocol termed joint Bell measurement VQE (JBM-VQE) to reduce the number of measurements and speed up the VQE algorithm. Our method employs joint Bell measurements, enabling the simultaneous measurement of the absolute values of all expectation values of Pauli operators present in the Hamiltonian. In the course of the optimization, JBM-VQE estimates the absolute values of the expectation values of the Pauli operators for each iteration by the joint Bell measurement, while the signs of them are measured less frequently by the conventional method to measure the expectation values. Our approach is based on the empirical observation that the signs do not often change during optimization. We illustrate the speed-up of JBM-VQE compared to conventional VQE by numerical simulations for finding the ground states of molecular Hamiltonians of small molecules, and the speed-up of JBM-VQE at the early stage of the optimization becomes increasingly pronounced in larger systems. Our approach based on the joint Bell measurement is not limited to VQE and can be utilized in various quantum algorithms whose cost functions are expectation values of many Pauli operators.
Computational analysis of chemical reactions using a variational quantum eigensolver algorithm without specifying spin multiplicity
The analysis of a chemical reaction along the ground state potential energy surface in conjunction with an unknown spin state is challenging because electronic states must be separately computed several times using different spin multiplicities to find the lowest energy state. However, in principle, the ground state could be obtained with just a single calculation using a quantum computer without specifying the spin multiplicity in advance. In the present work, ground state potential energy curves for PtCO were calculated as a proof-of-concept using a variational quantum eigensolver (VQE) algorithm. This system exhibits a singlet-triplet crossover as a consequence of the interaction between Pt and CO. VQE calculations using a statevector simulator were found to converge to a singlet state in the bonding region, while a triplet state was obtained at the dissociation limit. Calculations performed using an actual quantum device provided potential energies within ±2 kcal/mol of the simulated energies after adopting error mitigation techniques. The spin multiplicities in the bonding and dissociation regions could be clearly distinguished even in the case of a small number of shots. The results of this study suggest that quantum computing can be a powerful tool for the analysis of the chemical reactions of systems for which the spin multiplicity of the ground state and variations in this parameter are not known in advance.
Quantum-Selected Configuration Interaction: classical diagonalization of Hamiltonians in subspaces selected by quantum computers
We propose quantum-selected configuration interaction (QSCI), a class of hybrid quantum-classical algorithms for calculating the ground- and excited-state energies of many-electron Hamiltonians on noisy quantum devices. Suppose that an approximate ground state can be prepared on a quantum computer either by variational quantum eigensolver or by some other method. Then, by sampling the state in the computational basis, which is hard for classical computation in general, one can identify the electron configurations that are important for reproducing the ground state. The Hamiltonian in the subspace spanned by those important configurations is diagonalized on classical computers to output the ground-state energy and the corresponding eigenvector. The excited-state energies can be obtained similarly. The result is robust against statistical and physical errors because the noisy quantum devices are used only to define the subspace, and the resulting ground-state energy strictly satisfies the variational principle even in the presence of such errors. The expectation values of various other operators can also be estimated for obtained eigenstates with no additional quantum cost, since the explicit eigenvectors in the subspaces are known. We verified our proposal by numerical simulations, and demonstrated it on a quantum device for an 8-qubit molecular Hamiltonian. The proposed algorithms are potentially feasible to tackle some challenging molecules by exploiting quantum devices with several tens of qubits, assisted by high-performance classical computing resources for diagonalization.