Quantum Car-Parrinello Molecular Dynamics: A Cost-Efficient Molecular Simulation Method on Near-Term Quantum Computers

In this paper, we propose a cost-reduced method for finite-temperature molecular dynamics on a near-term quantum computer, Quantum Car-Parrinello molecular dynamics (QCPMD). One of the most promising applications of near-term quantum computers is quantum chemistry. It has been expected that simulations of molecules via molecular dynamics can be also efficiently performed on near-term quantum computers by applying a promising near-term quantum algorithm of the variational quantum eigensolver (VQE). However, this method may demand considerable computational costs to achieve a sufficient accuracy, and otherwise, statistical noise can significantly affect the results. To resolve these problems, we invent an efficient method for molecular time evolution inspired by Car-Parrinello method. In our method, parameters characterizing the quantum state evolve based on equations of motion instead of being optimized. Furthermore, by considering Langevin dynamics, we can make use of the intrinsic statistical noise. As an application of QCPMD, we propose an efficient method for vibrational frequency analysis of molecules in which we can use the results of the molecular dynamics calculated by QCPMD. Numerical experiments show that our method can precisely simulate the Langevin dynamics at the equilibrium state, and we can successfully predict a given molecule's eigen frequencies. Furthermore, in the numerical simulation, our method achieves a substantial cost reduction compared with molecular dynamics using the VQE. Our method achieves an efficient computation without using widely employed method of the VQE. In this sense, we open up a new possibility of molecular dynamics on near-term quantum computers. We expect our results inspire further invention of efficient near-term quantum algorithms for simulation of molecules.


NISQ deviceJoint researchQuantum chemistry
Kohdai Kuroiwa, Takahiro Ohkuma, Hirokazu Sato, Ryosuke Imai

Analytical formulation of the second-order derivative of energy for orbital-optimized variational quantum eigensolver: application to polarizability

We develop a quantum-classical hybrid algorithm to calculate the analytical second-order derivative of the energy for the orbital-optimized variational quantum eigensolver (OO-VQE), which is a method to calculate eigenenergies of a given molecular Hamiltonian by utilizing near-term quantum computers and classical computers. We show that all quantities required in the algorithm to calculate the derivative can be evaluated on quantum computers as standard quantum expectation values without using any ancillary qubits. We validate our formula by numerical simulations of quantum circuits for computing the polarizability of the water molecule, which is the second-order derivative of the energy with respect to the electric field. Moreover, the polarizabilities and refractive indices of thiophene and furan molecules are calculated as a testbed for possible industrial applications. We finally analyze the error-scaling of the estimated polarizabilities obtained by the proposed analytical derivative versus the numerical one obtained by the finite difference. Numerical calculations suggest that our analytical derivative may require fewer measurements (runs) on quantum computers than the numerical derivative to achieve the same fixed accuracy.


Quantum chemistryNISQ deviceJoint research
Yuya O. Nakagawa, Jiabao Chen, Shotaro Sudo, Yu-ya Ohnishi, Wataru Mizukami

Local variational quantum compilation of a large-scale Hamiltonian dynamics

Implementing time evolution operators on quantum circuits is important for quantum simulation. However, the standard way, Trotterization, requires a huge numbers of gates to achieve desirable accuracy. Here, we propose a local variational quantum compilation (LVQC) algorithm, which allows to accurately and efficiently compile a time evolution operators on a large-scale quantum system by the optimization with smaller-size quantum systems. LVQC utilizes a subsystem cost function, which approximates the fidelity of the whole circuit, defined for each subsystem as large as approximate causal cones brought by the Lieb-Robinson (LR) bound. We rigorously derive its scaling property with respect to the subsystem size, and show that the optimization conducted on the subsystem size leads to the compilation of whole-system time evolution operators. As a result, LVQC runs with limited-size quantum computers or classical simulators that can handle such smaller quantum systems. For instance, finite-ranged and short-ranged interacting L-size systems can be compiled with O(L^0)- or O(logL)-size quantum systems depending on observables of interest. Furthermore, since this formalism relies only on the LR bound, it can efficiently construct time evolution operators of various systems in generic dimension involving finite-, short-, and long-ranged interactions. We also numerically demonstrate the LVQC algorithm for one-dimensional systems. Employing classical simulation by time-evolving block decimation, we succeed in compressing the depth of a time evolution operators up to 40 qubits by the compilation for 20 qubits. LVQC not only provides classical protocols for designing large-scale quantum circuits, but also will shed light on applications of intermediate-scale quantum devices in implementing algorithms in larger-scale quantum devices.


Condensed matter physicsNISQ device
Kaoru Mizuta, Yuya O. Nakagawa, Kosuke Mitarai, Keisuke Fujii