Publications
Boosting computational power through spatial multiplexing in quantum reservoir computing
Quantum reservoir computing provides a framework for exploiting the natural dynamics of quantum systems as a computational resource. It can implement real-time signal processing and solve temporal machine learning problems in general, which requires memory and nonlinear mapping of the recent input stream using the quantum dynamics in computational supremacy region, where the classical simulation of the system is intractable. A nuclear magnetic resonance spin-ensemble system is one of the realistic candidates for such physical implementations, which is currently available in laboratories. In this paper, considering these realistic experimental constraints for implementing the framework, we introduce a scheme, which we call a spatial multiplexing technique, to effectively boost the computational power of the platform. This technique exploits disjoint dynamics, which originate from multiple different quantum systems driven by common input streams in parallel. Accordingly, unlike designing a single large quantum system to increase the number of qubits for computational nodes, it is possible to prepare a huge number of qubits from multiple but small quantum systems, which are operationally easy to handle in laboratory experiments. We numerically demonstrate the effectiveness of the technique using several benchmark tasks and quantitatively investigate its specifications, range of validity, and limitations in detail.
Quantum Circuit Learning
We propose a classical-quantum hybrid algorithm for machine learning on near-term quantum processors, which we call quantum circuit learning. A quantum circuit driven by our framework learns a given task by tuning parameters implemented on it. The iterative optimization of the parameters allows us to circumvent the high-depth circuit. Theoretical investigation shows that a quantum circuit can approximate nonlinear functions, which is further confirmed by numerical simulations. Hybridizing a low-depth quantum circuit and a classical computer for machine learning, the proposed framework paves the way toward applications of near-term quantum devices for quantum machine learning.
Harnessing disordered ensemble quantum dynamics for machine learning
The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5–7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100–500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.