Publications

Predicting excited states from ground state wavefunction by supervised quantum machine learning

Excited states of molecules lie in the heart of photochemistry and chemical reactions. The recent development in quantum computational chemistry leads to inventions of a variety of algorithms which calculate the excited states of molecules on near-term quantum computers, but they require more computational burdens than the algorithms for the ground states. In this study, we propose a scheme of supervised quantum machine learning which predicts excited state properties of molecules only from its ground state wavefunction and results in reducing the computational cost for calculating the excited states. Our model is comprised of a quantum reservoir and a classical machine learning unit which processes the results of measurements of single-qubit Pauli operators. The quantum reservoir effectively transforms the single-qubit operators into complicated multi-qubit ones which contain essential information of the system, so that the classical machine learning unit may decode them appropriately. The number of runs for quantum computers is saved by training only the classical machine learning unit and the whole model requires modest resources of quantum hardwares which may be implemented in current experiments. We illustrate the predictive ability of our model by numerical simulations for small molecules with and without including noise inevitable in near-term quantum computers. The results show that our scheme well reproduces the first and second excitation energies as well as the transition dipole moment between the ground states and excited states only from the ground state as an input. Our contribution will enhance applications of quantum computers in the study of quantum chemistry and quantum materials.

2020/02/28

Condensed matter physicsQuantum chemistryMaterial scienceNISQ deviceQuantum machine learning
by Hiroki Kawai, Yuya O. Nakagawa

Calculating transition amplitudes by variational quantum deflation

Variational quantum eigensolver (VQE) is an appealing candidate for the application of near-term quantum computers. A technique introduced in [Higgot et al., Quantum 3, 156 (2019)], which is named variational quantum deflation (VQD), has extended the ability of the VQE framework for finding excited states of a Hamiltonian. However, no method to evaluate transition amplitudes between the eigenstates found by the VQD without using any costly Hadamard-test-like circuit has been proposed despite its importance for computing properties of the system such as oscillator strengths of molecules. Here we propose a method to evaluate transition amplitudes between the eigenstates obtained by the VQD avoiding any Hadamard-test-like circuit. Our method relies only on the ability to estimate overlap between two states, so it does not restrict to the VQD eigenstates and applies for general situations. To support the significance of our method, we provide a comprehensive comparison of three previously proposed methods to find excited states with numerical simulation of three molecules (lithium hydride, diazene, and azobenzene) in a noiseless situation and find that the VQD method exhibits the best performance among the three methods. Finally, we demonstrate the validity of our method by calculating the oscillator strength of lithium hydride in numerical simulations with shot noise. Our results illustrate the superiority of the VQD to find excited states and widen its applicability to various quantum systems.

2020/02/26

Quantum chemistryNISQ deviceJoint research
by Yohei Ibe, Yuya O. Nakagawa, Nathan Earnest, Takahiro Yamamoto, Kosuke Mitarai, Qi Gao, Takao Kobayashi

Orbital optimized unitary coupled cluster theory for quantum computer

We propose an orbital optimized method for unitary coupled cluster theory (OO-UCC) within the variational quantum eigensolver (VQE) framework for quantum computers. OO-UCC variationally determines the coupled cluster amplitudes and also molecular orbital coefficients. Owing to its fully variational nature, first-order properties are readily available. This feature allows the optimization of molecular structures in VQE without solving any additional equations. Furthermore, the method requires smaller active space and shallower quantum circuit than UCC to achieve the same accuracy. We present numerical examples of OO-UCC using quantum simulators, which include the geometry optimization of the water molecule.

2019/10/25

Quantum chemistryNISQ deviceJoint research
by Wataru Mizukami, Kosuke Mitarai, Yuya O. Nakagawa, Takahiro Yamamoto, Tennin Yan, Yu-ya Ohnishi

Calculation of the Green's function on near-term quantum computers

The Green's function plays a crucial role when studying the nature of quantum many-body systems, especially strongly-correlated systems. Although the development of quantum computers in the near future may enable us to compute energy spectra of classically-intractable systems, methods to simulate the Green's function with near-term quantum algorithms have not been proposed yet. Here, we propose two methods to calculate the Green's function of a given Hamiltonian on near-term quantum computers. The first one makes use of a variational dynamics simulation of quantum systems and computes the dynamics of the Green's function in real time directly. The second one utilizes the Lehmann representation of the Green's function and a method which calculates excited states of the Hamiltonian. Both methods require shallow quantum circuits and are compatible with near-term quantum computers. We numerically simulated the Green's function of the Fermi-Hubbard model and demonstrated the validity of our proposals.

2019/09/26

Condensed matter physicsNISQ device
by Suguru Endo, Iori Kurata, Yuya O. Nakagawa

Variational Quantum Algorithm for Non-equilibrium Steady States

We propose a quantum-classical hybrid algorithm to simulate the non-equilibrium steady state of an open quantum many-body system, named the dissipative-system Variational Quantum Eigensolver (dVQE). To employ the variational optimization technique for a unitary quantum circuit, we map a mixed state into a pure state with a doubled number of qubits and design the unitary quantum circuit to fulfill the requirements for a density matrix. This allows us to define a cost function that consists of the time evolution generator of the quantum master equation. Evaluation of physical observables is, in turn, carried out by a quantum circuit with the original number of qubits. We demonstrate our dVQE scheme by both numerical simulation on a classical computer and actual quantum simulation that makes use of the device provided in Rigetti Quantum Cloud Service.

2019/08/26

Condensed matter physicsNISQ device
by Nobuyuki Yoshioka, Yuya O. Nakagawa, Kosuke Mitarai, Keisuke Fujii

Subspace Variational Quantum Simulator

Quantum simulation is one of the key applications of quantum computing, which can accelerate research and development in chemistry, material science, etc. Here, we propose an efficient method to simulate the time evolution driven by a static Hamiltonian, named subspace variational quantum simulator (SVQS). SVQS employs the subspace-search variational eigensolver (SSVQE) to find a low-energy subspace and further extends it to simulate dynamics within the low-energy subspace. More precisely, using a parameterized quantum circuit, the low-energy subspace of interest is encoded into a computational subspace spanned by a set of computational basis, where information processing can be easily done. After the information processing, the computational subspace is decoded to the original low-energy subspace. This allows us to simulate the dynamics of low-energy subspace with lower overhead compared to existing schemes. While the dimension is restricted for feasibility on near-term quantum devices, the idea is similar to quantum phase estimation and its applications such as quantum linear system solver and quantum metropolis sampling. Because of this simplicity, we can successfully demonstrate the proposed method on the actual quantum device using Regetti Quantum Cloud Service. Furthermore, we propose a variational initial state preparation for SVQS, where the initial states are searched from the simulatable eigensubspace. Finally, we demonstrate SVQS on Rigetti Quantum Cloud Service.

2019/04/18

Quantum chemistryNISQ deviceCondensed matter physics
by K. Heya, K. Nakanishi, K. Mitarai, K. Fujii

Sequential minimal optimization for quantum-classical hybrid algorithms

We propose a sequential minimal optimization method for quantum-classical hybrid algorithms, which converges faster, robust against statistical error, and hyperparameter-free. Specifically, the optimization problem of the parameterized quantum circuits is divided into solvable subproblems by considering only a subset of the parameters. In fact, if we choose a single parameter, the cost function becomes a simple sine curve with period 2π, and hence we can exactly minimize with respect to the chosen parameter. Furthermore, even in general cases, the cost function is given by a simple sum of trigonometric functions with certain periods and hence can be minimized by using a classical computer. By repeatedly performing this procedure, we can optimize the parameterized quantum circuits so that the cost function becomes as small as possible. We perform numerical simulations and compare the proposed method with existing gradient-free and gradient-based optimization algorithms. We find that the proposed method substantially outperforms the existing optimization algorithms and converges to a solution almost independent of the initial choice of the parameters. This accelerates almost all quantum-classical hybrid algorithms readily and would be a key tool for harnessing near-term quantum devices.

2019/03/28

Quantum chemistryNISQ deviceCondensed matter physics
by Ken M. Nakanishi, Keisuke Fujii, and Synge Todo

Theory of analytical energy derivatives for the variational quantum eigensolver

The variational quantum eigensolver (VQE) and its variants, which is a method for finding eigenstates and eigenenergies of a given Hamiltonian, are appealing applications of near-term quantum computers. Although the eigenenergies are certainly important quantities which determines properties of a given system, their derivatives with respect to parameters of the system, such as positions of nuclei if we target a quantum chemistry problem, are also crucial to analyze the system. Here, we describe methods to evaluate analytical derivatives of the eigenenergy of a given Hamiltonian, including the excited state energy as well as the ground state energy, with respect to the system parameters in the framework of the VQE. We give explicit, low-depth quantum circuits which can measure essential quantities to evaluate energy derivatives, incorporating with proof-of-principle numerical simulations. This work extends the theory of the variational quantum eigensolver, by enabling it to measure more physical properties of a quantum system than before and to perform the geometry optimization of a molecule.

2019/05/10

Condensed matter physicsQuantum chemistryNISQ device
by K. Mitarai, Y. O. Nakagawa, W. Mizukami

Subspace-search variational quantum eigensolver for excited states

The variational quantum eigensolver (VQE), a variational algorithm to obtain an approximated ground state of a given Hamiltonian, is an appealing application of near-term quantum computers. The original work [Peruzzo et al.; Nat. Commun.; 5, 4213 (2014)] focused only on finding a ground state, whereas the excited states can also induce interesting phenomena in molecules and materials. Calculating excited states is, in general, a more difficult task than finding ground states for classical computers. To extend the framework to excited states, we here propose an algorithm, the subspace-search variational quantum eigensolver (SSVQE). This algorithm searches a low energy subspace by supplying orthogonal input states to the variational ansatz and relies on the unitarity of transformations to ensure the orthogonality of output states. The k-th excited state is obtained as the highest energy state in the low energy subspace. The proposed algorithm consists only of two parameter optimization procedures and does not employ any ancilla qubits. The disuse of the ancilla qubits is a great improvement from the existing proposals for excited states, which have utilized the swap test, making our proposal a truly near-term quantum algorithm. We further generalize the SSVQE to obtain all excited states up to the k-th by only single optimization procedure. From numerical simulations, we verify the proposed algorithms. This work greatly extends the applicable domain of the VQE to excited states and their related properties like a transition amplitude without sacrificing any feasibility of it.

2018/10/22

Quantum chemistryNISQ deviceCondensed matter physics
by K. M. Nakanishi, K. Mitarai and K. Fujii

Generalization of the output of variational quantum eigensolver by parameter interpolation with low-depth ansatz

The variational quantum eigensolver (VQE) is an attracting possible application of near-term quantum computers. Originally, the aim of the VQE is to find a ground state for a given specific Hamiltonian. It is achieved by minimizing the expectation value of the Hamiltonian with respect to an ansatz state by tuning parameters θ on a quantum circuit which constructs the ansatz. Here we consider an extended problem of the VQE, namely, our objective in this work is to “generalize” the optimized output of the VQE just like machine learning. We aim to find ground states for a given set of Hamiltonians {H(x)}, where x is a parameter which specifies the quantum system under consideration, such as geometries of atoms of a molecule. Our approach is to train the circuit on the small number of x’s. Specifically, we employ the interpolation of the optimal circuit parameter determined at different x’s, assuming that the circuit parameter θ has simple dependency on a hidden parameter x as θ(x). We show by numerical simulations that, using an ansatz which we call the Hamiltonian-alternating ansatz, the optimal circuit parameters can be interpolated to give near-optimal ground states in between the trained x’s. The proposed method can greatly reduce, on a rough estimation by a few orders of magnitude, the time required to obtain ground states for different Hamiltonians by the VQE. Once generalized, the ansatz circuit can predict the ground state without optimizing the circuit parameter θ in a certain range of x.

2018/10/10

Quantum chemistryNISQ deviceCondensed matter physics
by K. Mitarai, T. Yan and K. Fujii