Qulacs: a fast and versatile quantum circuit simulator for research purpose

We introduce Qulacs, a fast simulator for quantum circuits intended for research purpose. To explore the possibilities of a near-term intermediate-scale quantum algorithm and long-term fault-tolerant quantum computing, a fast and versatile quantum circuit simulator is needed. Herein we show the main concepts of Qulacs, explain how to use its features via examples, and demonstrate its performance with numerical benchmarks.


Quantum chemistryCondensed matter physicsMaterial scienceQuantum machine learning
by Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro Nakadai, Jiabao Chen, Ken M. Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro Tamiya, Takahiro Yamamoto, Tennin Yan, Toru Kawakubo, Yuya O. Nakagawa, Yohei Ibe, Youyuan Zhang, Hirotsugu Yamashita, Hikaru Yoshimura, Akihiro Hayashi, Keisuke Fujii

Variational Quantum Simulation for Periodic Materials

We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such as ground states and quasiparticle band structures. By extending the unitary coupled cluster (UCC) theory to describe crystals in arbitrary dimensions, we numerically demonstrate in hydrogen chain that the UCC ansatz implemented on a quantum circuit can be successfully optimized with a small deviation from the exact diagonalization over the entire range of the potential energy curves. Furthermore, with the aid of the quantum subspace expansion method, in which we truncate the Hilbert space within the linear response regime from the ground state, the quasiparticle band structure is computed as charged excited states. Our work establishes a powerful interface between the rapidly developing quantum technology and modern material science.


Quantum chemistryCondensed matter physicsMaterial scienceNISQ deviceJoint research
by Nobuyuki Yoshioka, Yuya O. Nakagawa, Yu-ya Ohnishi, Wataru Mizukami

Predicting excited states from ground state wavefunction by supervised quantum machine learning

Excited states of molecules lie in the heart of photochemistry and chemical reactions. The recent development in quantum computational chemistry leads to inventions of a variety of algorithms which calculate the excited states of molecules on near-term quantum computers, but they require more computational burdens than the algorithms for the ground states. In this study, we propose a scheme of supervised quantum machine learning which predicts excited state properties of molecules only from its ground state wavefunction and results in reducing the computational cost for calculating the excited states. Our model is comprised of a quantum reservoir and a classical machine learning unit which processes the results of measurements of single-qubit Pauli operators. The quantum reservoir effectively transforms the single-qubit operators into complicated multi-qubit ones which contain essential information of the system, so that the classical machine learning unit may decode them appropriately. The number of runs for quantum computers is saved by training only the classical machine learning unit and the whole model requires modest resources of quantum hardwares which may be implemented in current experiments. We illustrate the predictive ability of our model by numerical simulations for small molecules with and without including noise inevitable in near-term quantum computers. The results show that our scheme well reproduces the first and second excitation energies as well as the transition dipole moment between the ground states and excited states only from the ground state as an input. Our contribution will enhance applications of quantum computers in the study of quantum chemistry and quantum materials.


Condensed matter physicsQuantum chemistryMaterial scienceNISQ deviceQuantum machine learning
by Hiroki Kawai, Yuya O. Nakagawa