Publications

Quantum Error Detection with Generalized Syndrome Measurement

Quantum error detection has been an experimental focus on early fault-tolerant quantum hardware. However, it requires multiple mid-circuit measurements to extract the syndrome and the readout-induced noise acts as a main contribution to the state infidelity. We present a novel method named Generalized Syndrome Measurement for quantum error detection that only requires a single-shot measurement on a single ancilla, while the canonical syndrome measurement needs to measure multiple times to extract the syndrome for each stabilizer generator. Our method minimizes the readout-induced noise by using single-shot measurements with a tolerable overhead on the gate complexity. We simulated the performance of our method using [[4, 2, 2]] and [[5, 1, 3]] code under realistic noise, and our method outperforms the canonical method when the gate error is comparatively small than the readout error. As mid-circuit measurements are more costly for various kinds of near-term scalable quantum hardware, our method can significantly boost the development of early fault-tolerant quantum computing.

2023/04/23

NISQ deviceFault-tolerant quantum computer
Yunzhe Zheng, Keita Kanno

Clifford+T-gate Decomposition with Limited Number of T gates, its Error Analysis, and Performance of Unitary Coupled Cluster Ansatz in Pre-FTQC Era

Fault-tolerant quantum computation (FTQC) is essential to robustly implement quantum algorithms and thus to maximize advantages of quantum computers. In this context, a quantum circuit is decomposed into universal gates that can be fault-tolerantly implemented, for example, Clifford+T gates. Here, T gate is usually regarded as an essential resource for quantum computation because its action cannot be simulated efficiently on classical computers. Practically, it is highly likely that only a limited number of T gates are available in the near future due to its experimental difficulty of fault-tolerant implementation. In this paper, considering this Pre-FTQC era, we investigate Clifford+T decomposition with a limited budget of T gates and propose a new model of the error of such decomposition. More concretely, we propose an algorithm to generate the most accurate Clifford+T-gate decomposition of a given single-qubit rotation gate with a fixed number of T gates. We also propose to model the error of Clifford+T decomposition using well-known depolarizing noise by considering the average of the effects of the error. We numerically verified our model successfully explains the decomposition error for a wide variety of molecules using our decomposition algorithm. Thus, we shed light on a first-stage application of quantum computers from a practical point of view and fuel further research towards what quantum computation can achieve in the upcoming future.

2023/01/12

Quantum chemistryNISQ deviceFault-tolerant quantum computer
Kohdai Kuroiwa, Yuya O. Nakagawa